ECOREGION Barents Sea and Norwegian Sea
 STOCK
 Saithe in Subareas I and II (Northeast Arctic)

Advice for 2012

ICES advises on the basis of the management plan implemented by the Norwegian Ministry of Fisheries and Coastal Affairs that catches in 2012 should be no more than 164000 t . Bycatches of coastal cod and S. marinus should be kept as low as possible.

Stock status

F (Fishing Mortality)		
	20082009	2010
MSY ($\mathrm{F}_{\text {mSY }}$)	? ?	? Undefined
Precautionary $\operatorname{approach}\left(\mathrm{F}_{\mathrm{pa}}, \mathrm{F}_{\text {lim }}\right)$	(\downarrow	(Harvested sustainably
Management plan (F_{MP})	$\checkmark \checkmark 1$	(\downarrow Below target
SSB (Spawning-Stock Biomass)		
	20092010	2011
MSY ($\mathrm{B}_{\text {trigger }}$)	? ?	? Undefined
Precautionary approach ($\mathrm{B}_{\mathrm{pa}}, \mathrm{B}_{\text {lim }}$)	()	(Full reproductive capacity
Management plan ($\mathrm{SSB}_{\mathrm{MP}}$)	$\checkmark \bullet 1$	(Above trigger

Figure 3.4.4.1
Saithe in Subareas I and II (Northeast Arctic). Summary of stock assessment (weights in ' 000 tonnes, recruitment estimates are shown in grey). Top right: SSB and F over the years.

Since 1995, SSB has been well above B_{pa} and has decreased in recent years. Fishing mortality has been well below F_{pa} since 1996, but has increased after 2005. The 2005 year class is above average, the 2006 year class is estimated to be below average, while the 2007 year class so far seems to be above average strength.

Management plans

The Norwegian Ministry of Fisheries and Coastal Affairs implemented a harvest control rule (HCR) in autumn 2007 (see Annex 3.4.4). ICES evaluated the Harvest Control Rule in 2007 and concluded that it is consistent with the precautionary approach, providing the assessment uncertainty and error are not greater than those calculated from historical data. This also holds true when for implementation error (difference between TAC and catch).

Biology

Saithe in Subareas I and II is an important predator on other species in the ecosystem, notably young herring, haddock, and Norway pout. Saithe is a typical migrating fish and makes both feeding and spawning migrations. There are examples of extensive emigration of young saithe from the western part of the Norwegian coast to the North Sea and of older saithe from more northern areas to Iceland and the Faroe Islands. There are few examples of immigration to the Norwegian coast.

Environmental influence on the stock

There have been variations in distribution and migration patterns over the years, but no link with environmental parameters has been established.

The fisheries

Norway accounts for more than 90% of the landings. The gillnet fishery is most intense during winter, purse seine in the summer months, while the trawl fishery takes place more evenly all year around. Coastal cod and S. marinus are caught as bycatch in some of the saithe fisheries (ICES, 2011b,c).

Catch by fleet Total catch $(2010)=193 \mathrm{kt}$, where 193 kt are landings (46% trawl, 28\% purse-seine, 19%

 gillnet, and 7% other gear types).
Quality considerations

The biological sampling from some vessel groups decreased considerably and may have become critically low after the termination of the Norwegian harbour sampling program in mid-2009, e.g. for all gears in the Lofoten area and for purse seine and handline in all areas in 2010. Following the 2010 benchmark the retrospective pattern of the assessment has been less severe.

Figure 3.4.4.2 Saithe in Subareas I and II (Northeast Arctic). Historical assessment results (final year recruitment estimates included).

Scientific basis

Assessment type

Input data
Discards and bycatch
Indicators
Other information
Working group report

XSA with a 3-15+ catch matrix, tuning time-series broken in 2002, reduced shrinkage (S.E. of the mean to which estimates are shrunk increased from 0.5 to 1.5) and no tapered time weighting. Two tuning fleets (NOcoast-Aco-4Q), cpue data from the Norwegian trawl fisheries, and indices from the Norwegian acoustic survey.
Discards are not accounted for.
None.
Benchmark was done in 2010 (WKROUND, 2010).
AFWG

ECOREGION Barents Sea and Norwegian Sea
 STOCK
 Saithe in Subareas I and II (Northeast Arctic)

Reference points

	Type	Value	Technical basis
Management Plan	$\mathrm{SSB}_{\mathrm{MP}}$	220000 t	$\mathrm{B}_{\mathrm{pa}}, \mathrm{TAC}$ is linearly reduced from F_{pa} at $\mathrm{SSB}=\mathrm{B}_{\mathrm{pa}}$ to 0 at SSB equal to zero.
	F_{MP}	0.35	Average TAC for the coming 3 years based on F_{pa}.
MSY Approach	MSY $\mathrm{B}_{\text {trigger }}$	not defined	
	$\mathrm{F}_{\text {MSY }}$	not defined	
Precautionary	$\mathrm{B}_{\text {lim }}$	136000 t	Change point regression.
	B_{pa}	220000 t	$\mathrm{B}_{\lim } * \exp \left(1.645^{*} \sigma\right)$, where $\sigma=0.3$.
	$\mathrm{F}_{\text {lim }}$	0.58	F corresponding to an equilibrium stock $=\mathrm{B}_{\text {lim }}$.
	F_{pa}	0.35	$\mathrm{F}_{\text {lim }} * \exp \left(-1.645^{*} \sigma\right)$, where $\sigma=0.3$. This value is considered to have a 95% probability of avoiding the $\mathrm{F}_{\text {lim }}$.

(unchanged since: 2011)
Yield and spawning biomass per Recruit F-reference points (2011):

	Fish Mort Ages 4-7	Yield/R	$\mathrm{SSB} / \mathrm{R}$
Average last 3 years	0.28	0.83	1.68
$\mathrm{~F}_{\max }^{\left[{ }^{*}\right]}$	-	-	-
$\mathrm{F}_{0.1}$	0.10	0.71	4.55
$\mathrm{~F}_{\text {med }}$	0.26	0.83	1.82
$\mathrm{~F}_{35 \% \text { SPR }}$	0.12	0.75	3.90
${ }^{*} 5 \mathrm{~F}^{2}$			

${ }^{[*]} \mathrm{F}_{\text {max }}$ is not well-defined.

Outlook for 2012

Basis: $\mathrm{F}_{2011}=\mathrm{TAC}$ constraint $=0.31^{1}$; Landings $(2011)=173 ; \operatorname{SSB}(2012)=313 ; \mathrm{R}(2011-2013)=$ geometric mean $(1960-2009)=168$ millions.

Rationale	Landings (2012)	Basis	F $(\mathbf{2 0 1 2})$	SSB (2013)	\%SSB change $^{2)}$	\%TAC change
Management plan ${ }^{4)}$	164	$\mathrm{~F}_{\mathrm{MP}}$	0.32	280	-11	-5
Precautionary approach	178	F	0.35	270	-14	+3
Zero catch	0	$\mathrm{~F}=0$	0	403	+29	-100
Status quo	80	$\mathrm{~F}_{\mathrm{sq}} * 0.5$	0.14	343	+10	-53
	149	$\mathrm{~F}_{\mathrm{sq}} * 1.0$	0.28	291	-7	-14
		$\mathrm{~F}_{\mathrm{sq}} * 1.25$	0.35	270	-14	+3

Weights in ' 000 t .
${ }^{1)}$ It is assumed that the TAC will be implemented and that the landings in 2011 will correspond to the TAC.
${ }^{2)}$ SSB 2013 relative to SSB 2012.
${ }^{3)}$ TAC 2012 relative to TAC 2011.
${ }^{4)}$ Average TAC for the coming 3 years based on F_{pa}.

Management plan

Following the agreed management plan implies a TAC of 164000 t in 2012. The SSB is expected to decrease by 11% in 2012 and to remain above B_{pa} at the beginning of 2013 .

The objectives of the HCR are to maintain high long-term yield, year-to-year stability, and full utilization of all available information on the stock dynamics. The plan aims to maintain target F at $\mathrm{F}_{\mathrm{pa}}=0.35$ and minimize betweenyear TAC change to $\pm 15 \%$, unless SSB falls below $B_{p a}$ in which case the fishing mortality should be reduced linearly from $F_{p a}$ at $S S B=B_{p a}$ to 0 at $S S B=0$.

Preliminary stochastic simulations show that the highest long-term yield is obtained at F values lower than the $\mathrm{F}=0.35$ currently used in the management plan. More work on this is needed to determine an $\mathrm{F}_{\mathrm{MSY}}$ value that could be considered as a basis for changing the harvest control rule.

PA approach

The fishing mortality in 2012 should be no more than F_{pa}, corresponding to landings of less than 178000 t in 2012. This is expected to keep SSB above B_{pa} in 2013 .

Additional considerations

The ICES advice is based on a harvest control rule adopted by the Norwegian authorities. The stock is exploited by fleets from a number of nations which acquire fishing rights by quota swaps with Norway. In addition, Russia sets a small quota for the Russian zone. ICES considers that its advice applies to all catches of Northeast Arctic saithe. Russian catches account for around 5%.

Preliminary long-term stochastic simulations suggest that $\mathrm{F}_{\mathrm{MSY}}$ could be lower than the current F_{MP}.

Regulations and their effects

TAC regulations are in place for this stock. Norway and Russia have set national measures applicable to their EEZ. Since 2007 the catch has been less than the TAC. However, in 2010 this difference was less than in previous years.

In the Norwegian fishery, quotas may be transferred between fleets if it becomes clear that the quota allocated to one of the fleets will not be taken. In addition to quotas, the fisheries are managed by minimum mesh size, minimum fish size, bycatch regulations, area closures, and other area and seasonal restrictions. Furthermore, sorting grids are used in the trawl fishery.

Since the early 1960s, purse-seiners and trawlers have dominated the fishery, with a traditional gillnet fishery for spawning saithe as the third major component. The purse-seine fishery is conducted in coastal areas and fjords. Historically, purse-seiners and trawlers have taken, approximately, equal shares of the catches. Regulation changes led to a reduction in the amounts being taken by purse-seiners after 1990.

Discarding is illegal, but may occur when trawlers targeting cod catch saithe without having a quota for saithe. In the purse-seine fishery, slipping has been reported, mainly related to minimum size of fish in the catch. There is no quantitative information on discarding.

On 1 March 1999, the minimum fish size was increased to 45 cm for trawl and conventional gears, and to 42 cm (north of Lofoten) and 40 cm (between $62^{\circ} \mathrm{N}$ and Lofoten) for purse-seine, with an exception for the first 3000 t purse-seine catch between $62^{\circ} \mathrm{N}$ and $66^{\circ} 33^{\prime} \mathrm{N}$, where the minimum fish size remains at 35 cm .

A real-time closure system has been in force along the Norwegian coast and in the Barents Sea since 1984, aimed at protecting juvenile fish. Based on scientific research data and mapping of areas by hired fishing vessels, fishing is prohibited in areas where the proportion by number of undersized cod, haddock, and saithe combined has been observed by inspectors to exceed 15% (the size limits vary by species). The time of notice before a closure of an area comes into force is $2-4$ hours for national vessels and 7 days for foreign vessels. Before or parallel to a closure, the Coast Guard requests vessels not to fish in an area where too many small fish have been observed during their inspections. A closed area is not opened until a low percentage of juvenile fish is documented by trial fishing within the area by the Surveillance Service.

Uncertainties in assessment and forecast

Discarding is illegal, but is known to occur in some fisheries. No estimates of discarding are available for assessment
The biological sampling of some vessel groups may have become critically low after the termination of the Norwegian harbour sampling programme in mid-2009.

Comparison with previous assessment and advice

The current estimates of SSB for 2010 and the F for 2009 are consistent with the previous assessment.
The basis for the advice is the same as last year.

Sources

ICES. 2010. Report of the Benchmark Workshop on Roundfish (WKROUND), 9-16 February 2010, Copenhagen, Denmark. ICES CM 2010/ACOM: 36. 183 pp.
ICES. 2011a. Report of the Arctic Fisheries Working Group, 28 April-4 May 2011. ICES CM 2011/ACOM:05.
ICES. 2011b. Cod in Subareas I and II (Norwegian coastal waters cod). Report of the ICES Advisory Committee, 2010. ICES Advice, 2010. Book 3, section 3.4.2.
ICES. 2011c. Golden Redfish (Sebastes marinus) in Subareas I and II. Report of the ICES Advisory Committee, 2010. ICES Advice, 2010. Book 3, section 3.4.6.

Figure 3.4.4.3 Saithe in Subareas I and II (Northeast Arctic). Stock-recruitment plot and yield-per-recruit analysis.

Table 3.4.4.1 Saithe in Subareas I and II (Northeast Arctic). ICES advice, management, and landings.

Year	ICES Advice	Predicted catch corresp. to advice	Agreed TAC ${ }^{2}$	Official landings	ICES landings
1987	No increase in F; TAC; protect juveniles	90	-	92	92
1988	No increase in F	< 83	-	114	114
1989	Status quo F; TAC	120	120	123	123
1990	$\mathrm{F} \leq \mathrm{F}_{\text {med }} ;$ TAC	93	103	96	96
1991	F at $\mathrm{F}_{\text {low }} ;$ TAC	90	100	107	107
1992	Within safe biological limits	115	115	128	128
1993	Within safe biological limits	$132{ }^{1}$	132	155	155
1994	No increase in F	$158{ }^{1}$	145	147	147
1995	No increase in F	221^{1}	165	168	168
1996	No increase in F	$158{ }^{1}$	163	171	171
1997	Reduction of F to $\mathrm{F}_{\text {med }}$ or below	107	125	144	144
1998	Reduction of F to $\mathrm{F}_{\text {med }}$ or below	117	145^{3}	153	153
1999	Reduce F below F_{pa}	87	$144{ }^{4}$	150	150
2000	Reduce F below F_{pa}	89	125^{5}	136	136
2001	Reduce F below F_{pa}	<115	135	136	136
2002	Maintain F below F_{pa}	<152	162^{6}	155	155
2003	Maintain F below F_{pa}	< 168	164	162	162
2004	Maintain F below F_{pa}	< 186	169	165	165
2005	Take account of Sebastes marinus bycatch. Maintain F below F_{pa}	<215	215	179	179
2006	Take account of Sebastes marinus bycatch. Maintain F below F_{pa}	<202	193.5	212	212
2007	Take account of Sebastes marinus bycatch. Maintain F below F_{pa}	<247	222.525	199	199
2008	Take account of Sebastes marinus bycatch. Maintain F below $\mathrm{F}_{\text {hcr }}$	<247	<247	185	$\begin{gathered} 185 \\ 1 \end{gathered}$
2009	Take account of Sebastes marinus bycatch. Apply management plan	<225	225	162	162
2010	Take account of Sebastes marinus bycatch. Apply management plan	<204	204	193	193
2011	Take account of Sebastes marinus bycatch. Apply management plan	< 173	173		
2012	Take account of coastal cod and Sebastes marinus bycatch. Apply management plan.	< 164			
Weights in ' 000 t .					
${ }^{1}$ Predicted catch at status quo F.					
${ }^{2}$ Set by Norwegian authorities. TAC for Russian EEZ is not included.					
${ }^{3}$ TAC first set at 125000 t , then increased in May 1998 after an intersessional assessment.					
${ }^{4}$ TAC set after an intersessional assessment in December 1998.					
${ }^{5}$ TAC set after an intersessional assessment in December 1999.					
${ }^{6}$ TAC first set at 152000 t, then increased in June 2003 after the spring 2002 assessment.					

Table 3.4.4.2 Saithe in Subareas I and II (Northeast Arctic). Nominal catch (t) by countries as officially reported to ICES

Year	Faroe Islands		France		Germany Dem.Rep		Fed.Rep. Germany		Iceland		Norway	Pol and		Portugal		Russia ${ }^{3}$		Spain		UK	Other ${ }^{5}$	Total all countries
1970	1097				29362		23466				151759					43550				15469		264924
1971	215		14536		16840		12204				128499	6017				39397		13097		10361		241272
1972	109		14519		7474		24595				143775	1111				1278		13125		8223		214334
1973	7		11320		12015		30338				148789	23				2411		2115		6841		213859
1974	46		7119		29466		33155				152699	2521				28931		7075		3104	5	264121
1975	28		3156		28517		41260				122598	3860		6430		13389		11397		2763	55	233453
1976	20		5609		10266		49056				131675	3164		7233		9013		21661		4724	65	242486
1977	270		5658		7164		19985				139705	1		783		989		1327		6935		182817
1978	809		4345		6484		19190				121069	35		203		381		121		2827		155464
1979	1117		2601		2435		15323				141346					3		685		1170		164680
1980	532		1016				12511				128878					43		780		794		144554
1981	236		218				8431				166139					121				395		175540
1982	339		82				7224				159643					14				732		168034
1983	539		418				4933				149556					206		33		1251		156936
1984	503		431		6		4532				152818					161				335		158786
1985	490		657		11		1873				103899					51				202		107183
1986	426		308				3470				63090					27				75		67396
1987	712		576				4909				85710					426				57	1	92391
1988	441		411				4574				108244					130				442		114242
1989	388		460	2			606				119625					506		506		726		122817
1990	1207		340	2			1143				92397					52				709		95848
1991	963		77	2	Greenland		2003				103283					504	4			492	5	107327
1992	165		1980		734		3451				119763					964		6		541		127604
1993	31		566		78		3687				140604			1		9509		4	2	415	5^{2}	154903
1994	67	2	557		15		1863		4	2	141589			1	2	1640	2	655	2	557	2	146950
1995	172	2	358		53		935				165001			5		1148				688	18	168378
1996	248	2	346		165		2615				166045			24		1159		6		707	33	171348
1997	193	2	560		363	2	2915				136927			12		1774		41		799	45	143629
1998	366		932		437	2	2936				144103			47		3836		275		355	40	153327
1999	181		638	2	655	2	2473		146		141941			17		3929		24		339	32	150375
2000	224	2	1438		651	2	2573		33		125932			46		4452		117		454	8^{2}	135928
2001	537		1279		701	2	2690		57		124928			75		4951		119		514	2	135853
2002	788		1048		1393		2642		78		142941			118		5402		37		420	3	154870
2003	2056		1022		929	2	2763		80	2	150400			147		3894		18		265	18^{2}	161592
2004	3071		255		891	2	2161		319		147975			127		9192		87		544	14	164636
2005	3152		447		817	2	2048		395		162338			354		8362		25		630		178568
2006	1795		899		786	2	2779		255		195462	89		339	2	9823		21	2	532	42	212822
2007	2048		966		810	2	3019		219		178644	99		412		12168		53	2	558	12	199008
2008	2314		1009		503	2	2263		113		165998	66		348		11577		33		506	10	184740
2009	1611		326		697		2021		69		144570	30		204	2	11899		2	2	379	45	161853
2010	817	2	678		956	2	1559	${ }^{2}$	109	${ }^{2}$	173971	251	2	99	2	14664		8	2	283	4^{2}	193399

2 As reported to Norwegian authorities.
3 USSR prior to 1991
4 Includes Estonia.
5 Includes Denmark,Netherlands, Ireland and Sweden.

Table 3.4.4.3 Saithe in Subareas I and II (Northeast Arctic). Assessment summary.

Year	Recruitment Age 3 thousands	$\begin{gathered} \hline \mathrm{SSB} \\ \text { tonnes } \end{gathered}$	Landings tonnes	$\begin{gathered} \text { Mean F } \\ \text { Ages 4-7 } \end{gathered}$
1960	92382	539004	133515	0.3148
1961	104182	570302	105951	0.2421
1962	203732	536072	120707	0.2503
1963	307190	498806	148627	0.2737
1964	95252	504704	197426	0.3101
1965	287982	513878	185600	0.2680
1966	139613	468328	203788	0.3505
1967	199107	480490	181326	0.2876
1968	156042	457349	110247	0.1500
1969	291446	519126	140060	0.1644
1970	263215	583641	264924	0.3407
1971	262608	549539	241272	0.2954
1972	153304	568220	214334	0.2747
1973	214898	587140	213859	0.2985
1974	93077	548068	264121	0.5102
1975	170518	439590	233453	0.4235
1976	256069	323825	242486	0.5062
1977	220593	259383	182817	0.4330
1978	135546	246457	155464	0.4561
1979	206194	221057	164680	0.5930
1980	113271	189652	144554	0.5049
1981	283643	187843	175540	0.5367
1982	121615	160760	168034	0.5945
1983	102847	196833	156936	0.6101
1984	90673	164444	158786	0.6617
1985	99780	125880	107183	0.5352
1986	225093	97133	67396	0.4729
1987	169531	84693	92391	0.5324
1988	80035	105371	114242	0.5793
1989	67026	117871	122817	0.5873
1990	72449	118862	95848	0.5425
1991	242213	117520	107327	0.4413
1992	379341	100820	127604	0.5927
1993	275265	102259	154903	0.4917
1994	208260	162961	146950	0.5152
1995	357604	223147	168378	0.4191
1996	135152	269576	171348	0.3429
1997	166302	252099	143629	0.2730
1998	118608	278808	153327	0.2655
1999	262946	290121	150375	0.2895
2000	149548	349261	135928	0.1957
2001	196047	380190	135853	0.2030
2002	340904	463790	154870	0.2124
2003	131912	448564	161592	0.1803
2004	155028	509233	164636	0.1690
2005	397982	581916	178568	0.1881
2006	69368	549331	212822	0.2387
2007	112763	574923	199008	0.2317
2008	238313	511528	184740	0.2574
2009	158868	415311	161853	0.2596
2010	168349	393155	193399	0.3330
2011	168349	358114		
Average	186770	351864	163049	0.3726

Annex 3.4.4 Implemented management strategy for saithe in Subareas I and II

The harvest control rule as communicated to ICES by the Norwegian Ministry of Fisheries and Coastal Affairs contains the following elements:

- Estimate the average TAC level for the coming 3 years based on $F_{p a}$. TAC for the next year will be set to this level as a starting value for the 3-year period.
- The year after, the TAC calculation for the next 3 years is repeated based on the updated information about the stock development. However, the TAC should not be changed by more than $+/-15 \%$ compared with the previous year's TAC.
- If the spawning-stock biomass (SSB) in the beginning of the year for which the quota is set (first year of prediction), is below $B_{p a}$, the procedure for establishing TAC should be based on a fishing mortality that is linearly reduced from $F_{p a}$ at $S S B=B_{p a}$ to 0 at $S S B$ equal to zero. At $S S B$ levels below $B_{p a}$ in any of the operational years (current year and 3 years of prediction) there should be no limitations on the year-toyear variations in TAC.

